braço operador - определение. Что такое braço operador
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое braço operador - определение

OPERADOR LINEAR A QUE É SEU PRÓPRIO ADJUNTO: ⟨ A V , W ⟩ = ⟨ V , A W ⟩
Operador auto-adjunto; Operador hermítico

Braço (componente)         
  • Partes de um violão, a exemplo do detalhe da localização do braço.
Braço (instrumento musical)
Braço (ou pescoço; em inglês neck) é uma parte específica de certos instrumentos de cordas. Ele compõe parcialmente o instrumento e é disposto de forma ereta, tendo sido colado, encaixado ou mesmo esculpido/talhado diretamente no corpo do instrumento em questão.
Operador (física)         
FUNÇÃO AGINDO EM UM ESPAÇO DE ESTADOS FÍSICOS EM FÍSICA
Operador físico
Em física, um operador é uma função atuando sobre o espaço de estados físicos. Como resultado desta aplicação sobre um estado físico, outro estado físico é obtido, muito frequentemente conjuntamente com alguma informação extra relevante.
Braço de Cygnus         
Braço Exterior; Braço de Norma; Braço de Norma-Cygnus
O Braço de Cygnus (também conhecido como o Braço Exterior, o Braço de Norma ou Braço de Norma-Cygnus) é um dos quatro maiores braços espirais que se estende a partir e em torno do eixo da região central da Via Láctea. O Braço de Cygnus tem um raio de 15,5 ± 2,8 kiloparsecs e fica a exterior do Braço de Perseus.

Википедия

Operador autoadjunto

Um operador autoadjunto, hermitiano (português brasileiro) ou hermítico (português europeu) é um operador linear em um espaço vetorial com produto interno que é o adjunto de si mesmo. No caso de espaços de dimensão finita, a matriz que representa esse operador é igual à sua transposta conjugada.

  • Propriedades
  • Um operador T {\displaystyle T\,} é autoadjunto se e somente se
T x , y = x , T y ,     x , y {\displaystyle \langle Tx,y\rangle =\langle x,Ty\rangle ,~~\forall x,y\,}
  • Todo autovalor λ {\displaystyle \lambda \,} de um operador autoadjunto T {\displaystyle T\,} é real:
λ v , v = T v , v = v , T v = λ ¯ v , v {\displaystyle \lambda \langle v,v\rangle =\langle Tv,v\rangle =\langle v,Tv\rangle ={\overline {\lambda }}\langle v,v\rangle \,}
  • Se λ 1 {\displaystyle \lambda _{1}\,} e λ 2 {\displaystyle \lambda _{2}\,} são autovalores diferentes associados a autovetores v 1 {\displaystyle v_{1}\,} e v 2 {\displaystyle v_{2}\,} . Então v 1 , v 2 = 0 {\displaystyle \langle v_{1},v_{2}\rangle =0\,} :
λ 1 v 1 , v 2 = T v 1 , v 2 = v 1 , T v 2 = λ 2 v 1 , v 2 {\displaystyle \lambda _{1}\langle v_{1},v_{2}\rangle =\langle Tv_{1},v_{2}\rangle =\langle v_{1},Tv_{2}\rangle =\lambda _{2}\langle v_{1},v_{2}\rangle \,}
( λ 1 λ 2 ) v 1 , v 2 = 0 {\displaystyle \Longrightarrow (\lambda _{1}-\lambda _{2})\langle v_{1},v_{2}\rangle =0}
Como λ 1 {\displaystyle \lambda _{1}} e λ 2 {\displaystyle \lambda _{2}} são distintos, temos λ 1 λ 2 0 {\displaystyle \lambda _{1}-\lambda _{2}\neq 0} , portanto v 1 , v 2 = 0 {\displaystyle \langle v_{1},v_{2}\rangle =0} .